Second generation tetrahydroquinoline-based protein farnesyltransferase inhibitors as antimalarials.

نویسندگان

  • Pravin Bendale
  • Srinivas Olepu
  • Praveen Kumar Suryadevara
  • Vivek Bulbule
  • Kasey Rivas
  • Laxman Nallan
  • Brian Smart
  • Kohei Yokoyama
  • Sudha Ankala
  • Prakash Rao Pendyala
  • David Floyd
  • Louis J Lombardo
  • David K Williams
  • Frederick S Buckner
  • Debopam Chakrabarti
  • Christophe L M J Verlinde
  • Wesley C Van Voorhis
  • Michael H Gelb
چکیده

Substituted tetrahydroquinolines (THQs) have been previously identified as inhibitors of mammalian protein farnesyltransferase (PFT). Previously we showed that blocking PFT in the malaria parasite led to cell death and that THQ-based inhibitors are the most potent among several structural classes of PFT inhibitors (PFTIs). We have prepared 266 THQ-based PFTIs and discovered several compounds that inhibit the malarial enzyme in the sub- to low-nanomolar range and that block the growth of the parasite (P. falciparum) in the low-nanomolar range. This body of structure-activity data can be rationalized in most cases by consideration of the X-ray structure of one of the THQs bound to mammalian PFT together with a homology structural model of the malarial enzyme. The results of this study provide the basis for selection of antimalarial PFTIs for further evaluation in preclinical drug discovery assays.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2-Oxo-tetrahydro-1,8-naphthyridines as selective inhibitors of malarial protein farnesyltransferase and as anti-malarials.

A new class of 2-oxo-tetrahydro-1,8-naphthyridine-based protein farnesyltransferase inhibitors were synthesized and found to inhibit protein farnesyltransferase from the malaria parasite with potencies in the low nanomolar range. The compounds were much less potent on mammalian protein prenyltransferases. Two of the compounds block the growth of malaria in culture with potencies in the sub-micr...

متن کامل

Resistance to a protein farnesyltransferase inhibitor in Plasmodium falciparum.

The post-translational farnesylation of proteins serves to anchor a subset of intracellular proteins to membranes in eukaryotic organisms and also promotes protein-protein interactions. Inhibition of protein farnesyltransferase (PFT) is lethal to the pathogenic protozoa Plasmodium falciparum. Parasites were isolated that were resistant to BMS-388891, a tetrahydroquinoline (THQ) PFT inhibitor. R...

متن کامل

Potent, Plasmodium-selective farnesyltransferase inhibitors that arrest the growth of malaria parasites: structure-activity relationships of ethylenediamine-analogue scaffolds and homology model validation.

New chemotherapeutics are urgently needed to combat malaria. We previously reported on a novel series of antimalarial, ethylenediamine-based inhibitors of protein farnesyltransferase (PFT). In the current study, we designed and synthesized a series of second generation inhibitors, wherein the core ethylenediamine scaffold was varied in order to examine both the homology model of Plasmodium falc...

متن کامل

Structural basis for binding and selectivity of antimalarial and anticancer ethylenediamine inhibitors to protein farnesyltransferase.

Protein farnesyltransferase (FTase) catalyzes an essential posttranslational lipid modification of more than 60 proteins involved in intracellular signal transduction networks. FTase inhibitors have emerged as a significant target for development of anticancer therapeutics and, more recently, for the treatment of parasitic diseases caused by protozoan pathogens, including malaria (Plasmodium fa...

متن کامل

2-Oxotetrahydroquinoline-based antimalarials with high potency and metabolic stability.

We report a series of novel inhibitors of protein farnesyltransferase based on the 2-oxotetrahydroquinoline scaffold. We developed an efficient synthesis of these compounds. These compounds show selective inhibtion of the malaria versus human farnesyltransferase and inhibit the growth of the malaria parasite in the low nanomolar range. Some of the compounds are at least an order of magnitude mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of medicinal chemistry

دوره 50 19  شماره 

صفحات  -

تاریخ انتشار 2007